If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-10a+3=0
a = 1; b = -10; c = +3;
Δ = b2-4ac
Δ = -102-4·1·3
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{22}}{2*1}=\frac{10-2\sqrt{22}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{22}}{2*1}=\frac{10+2\sqrt{22}}{2} $
| (w+1)^2=(2w^2+8w-6) | | 13y−7=6y+21 | | x/4+10=38 | | 17.95-76x=113.77 | | 2(−x−2)=10 | | 9x+5+4+8=3x+4+10x | | 5(x+7)=2 | | 5s-7s=-2s | | x+0.06x=529 | | x/5+x/2=x-3 | | (7+u)(4u-2)=0 | | 508=3x | | (x+2)/8=(5x+4)/32 | | 31/4x-34=91/18 | | M-{m-1}/2=1-{m-2}/3 | | 9+x/19=-11 | | 2x+3=508 | | 15=0.9n | | x+3=508 | | 100+50x=40x | | 2^(x+9)=6 | | p=2(600)*2(18) | | 15=-((44(10^2))/(x^2))+16 | | 10=-((44(15^2))/(x^2))+21 | | 2/p-1/2p=p^2+1/p^2+1 | | 29+9n=14 | | 3^x=80 | | 10=(-9900/(x^2))+21 | | 5=10^4/y^2 | | x3-4x2+13x+50=0 | | x²-5=36x | | x3+4x2+13x+50=0 |